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Disorder and plasticity in the fragmentation of coatings
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Using a one-dimensional model that takes into account ideal plasticity of the surface layer, we investigate
the fragmentation of thin coatings under uniaxial tension. The coating is modeled as a chain of plastically
deforming elements that are connected via leaf springs to a uniformly stretched substrate. Each coating element
can only withstand a maximum elongation, which is randomly distributed. From simulations of the fragmen-
tation process we find that the average crack spagipngcales with applied straig, i.e.,(L)x<e ™. Simula-
tions and analytical arguments show that the scaling exponel@pends on the disorder parameters of the
model.
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Multiple cracking phenomena are ideally suited to studythrough simulations the extension and the breakage of ele-
the interplay between the statistical aspects of failure phements in our model. These results are then discussed and
nomena and the elastic properties of sofitls3]. Common  summarized.
examples for sequential cracking processes are the fragmen- We start by noting that the fragmentation of coatings un-
tation of thin brittle coatings, the fragmentation of fibers in der uniaxial tension often leads to patterns consisting of par-
matrices and matrix cracking in cross-ply lamingis Dur- allel cracks; then the physical situation is effectively one-
ing such fragmentation processes a large number of breaka?@nensional (ID). In line with previous studies of

events occurs, which allows us to use the information obifagmentation[15,20-23 and having such situations in

tained from the fragmentation kinetics to analyze the microMind, we start from a 1D model, as depicted in Fig. 1. The

mechanical properties of the systéi. coating is modeled as a linear arrangement of telescopic el-

Several research groups have investigated the fragment [r:e\:l\bts _T_T]at can gartlyf etx:end “Udeﬁ tens(rimNg_etlallz ser:a
tion of thin brittle coatings on ductile substrates under; elow). Ihe number of telescopic elements - =ac

uniaxial tension, see, e.g., Refé—14,. The formation of junction point between two telescopic elements is attached

. ) . via a leaf spring to the substrate. The leaf springs behave
cracks is strongly influenced by the existence of randomly nder tension like Hookean springs, ie., their force-

distributed defects that promote cracking. Previous studies longation relation is given b, =Duv, whereF, (v,) are
fragmentation of inhomogeneous elastic Coat“ﬁgs_lﬂ_ the force(the elongatiopof the kth leaf spring and is its
have shown that the average fragment length scales with thqaqtic constant. Here we only consider the horizontal com-

applied strain(L )¢, the power law exponent depending ponent of the elongations of the leaf springs and neglect the
on the failure threshold distribution and on te&sticre-  yector character of the elongation, cf. we follow the shear-

sponse to deformation. lag model[26]. We model the uniform extension of the sub-
Recently, the complex behavior of rocks and solids under

deformation has been studied using models containing hys- N1 leq _leg v

teretic element$18,19, which “open” and “close” under o-[om=t-o-{mt-0 o-(m=-o-[m==-o

pressure. The key hysteretic feature here is that in such ele- Py i leg i v i

ments the thresholds for opening and for closing differ. Such
a hysteretic behavior is a nonlinear phenomenon that de- §
scribes a behavior qualitatively different than elasticity. In ™
particular, the relaxation of stress does not necessarily imply
the relaxation of strair(i.e., the plastic behavior appears
Here we study the influence giasticity on fragmentation.
For this we extend our former model, by introducing in it
plastically deformable elements. Using this extension we in-
vestigate both analytically and through simulations the cre-
ation and evolution of cracks in the system.

The paper is organized as follows: First we introduce the
one-dimensional model mentioned above. Then we deter- §
mine the equations governing the forces and the elongations™
in the model. Solving these equations allows us to follow FG, 1. One-dimensional model for the fragmentation of thin

plastic coatings under uniaxial substrate extension. We show the
elongationsu, and the forced, on the telescopic elements in the
*Present address: ETH #ch, Department of Materials, Institute surface layer. The elongation of theéh leaf spring isv,, the cor-
of Polymers, 8092 Ziich, Switzerland. responding restoring force beirkg, . See text for details.
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Ar we assume that the,(k) discussed above are randomly dis-
l tributed. Here we take as in former works,15,20-23,2b
that the cumulative probability distributioR(u,) of the
_______ qmm— e failure thresholds obeys a power law:

for Upmin<Up<UpintW

( Up— umin) “
Feu(Up) = w

0 otherwise.
T — ()

0 fy f The parameters of the distribution akeW, andu,,;,. As we

FIG. 2. Force-elongation relation for the telescopic elements.proceed to show, the values of these parameters have a

The force is denoted bfyand the total length of the element hy strong influence on fragmentatlt_)n. . .
The initial length of the element ig,. An element starts to open If the mth telescopic element in the coating breaks, then it

when the forcef, on the element attains the valtig. The dashed is removed from the system irreversibly and does not influ-

line indicates that thith telescopic element retains its elongation if €Nce the forces and the elongations anymore, i.e., we set
the forcef, acting on it again drops belof . fn=0 andu,,=0 after the failure of themth element.

Our analysis of the model starts with the derivation of the
strate by increasing the distances between all leaf springs. §quations for the forces and for the elongations. The geo-
the distance between two leaf springs increases from its inimetrical arrangement of Fig. 1 implies
tial length I to leq+Al, the strain in the substrate is
=Al/lgq. Then stress is transferred from the substrate to the Al=vi—vg1 U 2
coating via the leaf springs. Such a stress transfer results in ) ,
the elongation of the telescopic elements. Previous studid®’ 1=k=N—1. Since the sum of all forces acting on each
[15,20—25 of fragmentation of elastic coatings used Simp|ejunct|on pomt_m the surface layer between two telescopic
springs instead of telescopic elements. elements vanishes, we ha¥g=f,—f,_,. At the bound-

The force-elongation relation of the telescopic elements i€€Sfo=fn=0 holds. Hooke’s law for the leaf springs im-
displayed in Fig. 2. The initial length of a telescopic elementPliesFx=Duv that leads t@ = (f,—f_,)/D. Inserting this
is |- Under (slow) extension of the substrate, the restoring&duation into Eq(2) yields
forcesf,_; andf, on the k—1)th and(kth) telescopic ele- 1
ments and the restoring forég of thekth leaf spring equili- Al=— B(fk+1_2 firt+fi_ 1)+ uy. 3
brate. If the forcef, on thekth telescopic element is smaller
than f,, then its elongatioru, stays at zerou,=0. If f,
attains the valué, , the element starts to “open,” so that in
the following f,=f, is obeyed. The elongation takes a de- e
termined valueu,# 0 so that the conditions for the balance — _
of forces and the geometrical requirements of the system of ¢ Okr1t 20k G-t @
telescopic elements and springs are both fulfilled. We notgn gq. (4) e, denotes the relative elongation of a telescopic
that such deformations, in which the element elongates %Iement:eﬁuklleq.
constant force, are quite often observed in the yielding of |5 the peginning, the elongations both of the telescopic
thermoplastic polymers. Furthermore, as indicated in Fig. Zelements and of the leaf springs vanish. Under substrate ex-
if at a later stage the forc, decreases, the elongatioR  tension one observes first that only the leaf springs move; at
keeps its attained value. The behavior depicted in Fig. Zjgher extensions also the telescopic elements start to extend.
modelsideal plasticity _ In the first phase, the restoring forchsin the surface layer

We now consider failure in the telescopic elements, saygre smaller thar,, and thus the telescopic elements are not

themth element breaks if its elongatian, exceeds a critical  stretchedg, = 0. Consequently, we find from E¢4)
valueuy(m). In general, if an element breaks, this leads to

stress relaxation in its neighborhood. Hence the stresses of £=—0kr1+20k— Ok-1 (5)

the elements in the vicinity of this new crack decrease. If the

force fy of thekth element drops below the valfig, thenu, ~ for 1<k<N—1. The solution of Eqs4) with the boundary

does not decrease to zero, but retains the value that it attainednditions go=gn=0 is a parabolag,=ek(N—Kk)/2. At

just when the crack occurred. This is indicated by the dasheldirger substrate extension the force on the telescopic element

line in Fig. 2. This value is kept until the forc attains  in the middle of the segment attains the valyeand this

again the thresholdl, for opening under the influence of the element starts to open. This opening prevents a further in-

continuously growing substrate extension. Thenktietele-  crease in the force acting on the element. Instead, under fur-

scopic element can again continue to open. Given the stresther substrate extension the neighboring telescopic elements

strain curve depicted in Fig. 2, our telescopic elements showlso open. Then these neighbors also feel the féyceln-

“ideal” plasticity under deformation. terestingly, it turns out that this process of opening leads to
Let us now focus on the breakage of the elements. For thithe appearance of a plateau in teevs k plot. Consider

leg .

If we divide Eq.(3) by I.qand defineg=f,/(Dl¢y) and the
applied straine=Al/l,, we are led to
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exemplarily five consecutive elements, seyk—2, k—1, k, 0.015 - T

k+1, k+2, for which f,=f,. With g,=f, /(DI follows « % "
from Eq. (4) that the elongations for the elements 0.010 * X il e
m=k—1, k andk+1 are all equalg,=e=Al/lo,. Hence T e LT TR
one observes a successive opening of telescopic elements 3 Tt . *x % *;‘;'
that show(apart from the flanksthe same elongation; in- 0005 L X x ax X e
creasing the strain increases the plateau value and also the . ] * *
number of telescopic elements inside the plateau. *Xx } \ *

In order to exemplify this situation, we have solved the 0.000 WRRRVIS FEEEE TS PRI
system of Egs(4) numerically. In the simulations, we start (@ 0 16 32 43 64
from our one-dimensional model of Fig. 1. At the beginning, k
each coating element is assigned a random maximum elon- 12 ‘
gationu,(k) using Eq.(1). Then the equations for the bal- : ' o
ance of forces are solved numerically. We applied two dif- 10 1
ferent simulation algorithms denoted Wy and B. In our 08 - i
simulations using algorithm, we increase stepwise the ap- -
plied straine starting frome=0 and solve Eqs(4) with all w06 ]
e, equal to zero. If the maximum value of the forEgex- 04 | .
ceedsf,, then the force distribution is determined anew via o | N\ ]
a relaxation method in order to find which elements open. In ) \
our simulations using algorithnB, we increase the strain 0.0 : ! '
step by step and determine the telescopic element for which (b) 0 16 3k2 48 64
fi exceedsf,. Then we set its forcd, equal tof, and
determine from Eq(4) its straine,. The use of algorithnB
requires that the stepwise increment dnbe sufficiently 0.015 ' ' '
small. MethodA is slower, but is always successful, whereas
methodB may show instabilities, depending on the situation 0,010
at hand and hence must be used with care. ghebtained )
by both methods agree within 0.5%. &

The results of the computations are presented in Fig. 3 0.005
where the parameters ale=64, D=1, | =1, f,=1, Uy,
=0.002,W=0.01, andae= 1. In Fig. 3a) we plot the relative
elongationse, as a function ofk. Figure 3a) is taken in a 0.000
situation before the first failure occurs. For the parameters ©) 0
chosen &,=8g, /N?=8f, /(DI N?)=0.00195. One may
note the appearance of a plateau, symmetrically located 12
aroundk=32. Figure 8a) is attained at =0.003 75, so that <1 ' ' ' ]
g>eg, . Figure 3b) presents through a solid line the fordgs Lo 7
as a function ok for the same situation as in Fig(e3. Note 08 k i
that the force distribution also displays a plateau zone, with
fy="fy. Thek range of the plateau zone of the force distri- w06 ]
bution is identical to that of the strain distribution. Outside 04 -
the plateau the shape df is parabolic. Additionally, we 02
display in Fig. 3b) through a dashed line the forcég for ’
e=g,. Then no telescopic element is yet elongated and thus 0.0 4 6 L Fa—
all e, are zero. Note that for =&, the functionf, vskis a (d) k

parabola with its maximal value equal tg.

We now turn to the discussion of fracture, where the in-  FIG. 3. Evolution of the relative elongatioes and the forcef,
fluence of plasticity becomes important. As just discussedwith applied straine before the firs{(a) and (b)] and the second
for e>¢, the spatial distribution of the straireg shows a  crack[(c) and(d)] in the surface layer. The solid lines denote the
plateau, withe,=¢. The telescopic elements at the flanks of functions f, ande,, respectively, the stars are the failure thresh-
the plateau zone are elongated as well, but wjtise. The  olds. The dashed line ifb) is the force distribution foe=¢, . The
elongation of the other elements is zero. Hence only the teleparameters areN=64, D=1, l,~=1, f,=1; furthermore up;,
scopic elements in the plastic zofateau and flankscan ~ =0.002,W=0.01 ande=1 in Eq.(1).
break at this stage. Hence one of the elements of the plastic
zone, namely, that with the lowest failure threshold will fail ments is frozen unti{lunder the influence of the continuous
(break first. In Fig. 3a) this element is indicated by the star extension of the substratat a later stage the force may
touching the plateau, here &t=30. After the failure, the again attain the valué,. Due to the randomness in the
stress in the vicinity of the newly formed crack relaxes, sothreshold values, after several breaks ¢healistribution be-
that next to it the restoring forcefy, of the telescopic ele- gins to scatter strongly; on the other hand the stress distribu-
ments can drop belov,. Then the straire, of these ele- tion in the sample is less irregular.
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In Fig. 3(c) we show the situation after the first failure 10° v e
occurred(here at positiotk=30), and shortly before the sec- - ]
ond failure happengere ate =0.008 69. Note that the open
elements in the interval 28k<41 are now frozen. The force =z
f\ in the two newly formed segments increases witlf the R 10" 3
maximum value off, attains again the valuf, for opening v i
[the plot of f, vs k is given in Fig. 3d)], an element in the
center of one of the two fragments opens. The second crack ,
occurs in this new plastic zor{@ere at positiork=47, see 10 P T T R
Fig. 3()]. e—u_ /1 [%]

As shown in Ref[15], the evolution of(L), the mean in"eq
crack spacing, under applied strain provides much informa- g1 4. Average crack spacing.) vs applied strains for D
tion about disorder and nonlinear material behavior. Hencetl and|eq:1 and three sets of parameters of the failure threshold
here we also monitor the fragmentation kinetics, i.e., the evodistribution Eq.(1). The mean crack spacing for each set of param-
lution of (L) with the applied strain. Here one can distinguisheters was obtained by averaging over five realizations of the failure
the following three important cases. For largg,, Uy, threshold distribution(a) Here N=256, Unj,=0.1, W=7.5, a=1
>e,loq, Many telescopic elements open before the first fail2nd thus<=1. (b) The parameters aié=64, Uy, =0, W=10, and
ure occurs. Then the stra@ of almost all coating elements @=1, which yieldsx=a. (c) HereN=64, Up;,=0, W=0.05, and
equals s (“isostrain” situation [27]). Since the average @1 holds, and we finde=1/2. The slope of the dashed line is
number of cracks is given byn)=(N—1)F(sley), the ~0.5 and the slope of the solid line1.
average crack spacing (L) is (L)=N/((n)+1)
~[ (&l eg— Umin)/ W]~ We note that this case models an ex- simulations are presented in Fig. 4 together with two lines
perimentally relevant situation, where cracking always ocWith slope —0.5 and —1, respectively. As is evident, the
curs at strains larger than the yield strain. simulation data support our analytical expressions.

In the case of larg&V, W>eg,l.,, anduy,, arbitrary, a Power laws of the typ€L)e«e™* also show up in the
few springs may break before large plastic zones form; thigragmentation of elastic materials; for there one finds in late
affects the initial stage of cracking and lets it resemble théragmentation stages=a/(2a+1) [5,20,21. We stop to
corresponding situation in strongly disordered elastic coatnote, however, that in the case of purely elastic materials, the
ings[5]. On the other hand, for largé, the total number of  strain inside each separated fragment depends on the actual
cracks formed during this stage is small, so that the averaggress, but is independent of the previous history. Plastic ma-
crack spacingL) is still large enough to allow for the for- terjals, on the other hand, show strains that depieiue to
mation o_f Iarge plastic zones in later stages of the procesgne earlier opening of telescopic element® the previous
This again will lead to(L ) (&l oG Unmin) . history of the sample. This leads to an additional source of

Another situation takes place in the case of sSWal(W  gequential non-Markovian behavior for plastic materials, ef-

<eyleg andupip<e,leq. In this case only a few elements in ¢oqt that changes the dependencexasn «, from the form
the middle of the fragments open. Then the force d|str|but|or]tOr elastic materials given above

is nearly parabolic with a maximum value ff. Since only
a very few elements are open when a crack is formed, eac&
failure occurs when the maximum value 6f attainsf, .
Thus the condition for breakage is=8g,/(L)? which
leads to the power lal )&~ 2 Here the scaling law ex-
ponent is3, independent ofv. In all cases we find a power
law (L)og™*, where, howeverx=a or k=3, depending
on the parameters.

We have simulated these three different situations: w
consider, namely, failure processes in systems givel by
=1 andle=1, while using in the threshold distribution Eq.
(1) a=1; we consider three cases: (A we setN=256,
Umin=0.1, W=7.5; in (b) we takeN= 64, u;,=0, W=10;
and in(c) N=64, un,i,=0, W=0.05. We note that the set of

parametersa) belongs to the case wheug,, is large com-  gniering Eq(1) (the failure probability distributionstrongly
pared t0eyleq, since we havey,=0.1>eyl¢q=0.000122, infyence the shape of the strain distribution, since they de-
whereas, evidentlyb) and(c) haveumn<eyleq. With these  tormine the size of the plastic zone. The fragmentation kinet-

parameter sets we perform the simL_JIations for five realizaj.g (as determined from simulationsbeys scaling, i.e{L)
tions of the failure threshold distribution and evaludi®as  5n4¢ are related by a power law behavior.

a function ofe; then we averagélL) over the five realiza-
tions. As stressed above, we expect in the cémesnd(b) a The authors are thankful for the support of the DR@
slope of —1, and for(c) a slope—0.5. The results of the SFB 428 and of the Fonds der Chemischen Industrie.

We note that the situation discussed abowith purely
astic elementswill persist when the elements also show
elastic features at small stresdeste that plasticity domi-
nates at large stresge3he reason is again the formation of
large plastic zones at larger strains. Evidently, the initial
stages of breakage will depend strongly on the elastic param-
eters involved5].

Summarizing, in this study we have investigated the se-
Fé]uential cracking of thin coatings under uniaxial substrate
extension. We have put forward a 1D model with ideal plas-
tic elements. This allowed us to focus on the interplay be-
tween the plastic behavior of the coating and the random
distribution of coating defects. Our numerical simulations
based on this model reveal that the values of the parameters
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