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Disorder and plasticity in the fragmentation of coatings

U. A. Handge,* I. M. Sokolov, and A. Blumen
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~Received 28 November 2000; published 14 June 2001!

Using a one-dimensional model that takes into account ideal plasticity of the surface layer, we investigate
the fragmentation of thin coatings under uniaxial tension. The coating is modeled as a chain of plastically
deforming elements that are connected via leaf springs to a uniformly stretched substrate. Each coating element
can only withstand a maximum elongation, which is randomly distributed. From simulations of the fragmen-
tation process we find that the average crack spacing^L& scales with applied strain«, i.e., ^L&}«2k. Simula-
tions and analytical arguments show that the scaling exponentk depends on the disorder parameters of the
model.
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Multiple cracking phenomena are ideally suited to stu
the interplay between the statistical aspects of failure p
nomena and the elastic properties of solids@1–3#. Common
examples for sequential cracking processes are the fragm
tation of thin brittle coatings, the fragmentation of fibers
matrices and matrix cracking in cross-ply laminates@4#. Dur-
ing such fragmentation processes a large number of brea
events occurs, which allows us to use the information
tained from the fragmentation kinetics to analyze the mic
mechanical properties of the system@5#.

Several research groups have investigated the fragme
tion of thin brittle coatings on ductile substrates und
uniaxial tension, see, e.g., Refs.@6–14#. The formation of
cracks is strongly influenced by the existence of random
distributed defects that promote cracking. Previous studie
fragmentation of inhomogeneous elastic coatings@15–17#
have shown that the average fragment length scales with
applied strain,̂ L&}«2k, the power law exponent dependin
on the failure threshold distribution and on theelastic re-
sponse to deformation.

Recently, the complex behavior of rocks and solids un
deformation has been studied using models containing
teretic elements@18,19#, which ‘‘open’’ and ‘‘close’’ under
pressure. The key hysteretic feature here is that in such
ments the thresholds for opening and for closing differ. Su
a hysteretic behavior is a nonlinear phenomenon that
scribes a behavior qualitatively different than elasticity.
particular, the relaxation of stress does not necessarily im
the relaxation of strain~i.e., the plastic behavior appears!.
Here we study the influence ofplasticity on fragmentation.
For this we extend our former model, by introducing in
plastically deformable elements. Using this extension we
vestigate both analytically and through simulations the c
ation and evolution of cracks in the system.

The paper is organized as follows: First we introduce
one-dimensional model mentioned above. Then we de
mine the equations governing the forces and the elongat
in the model. Solving these equations allows us to foll
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through simulations the extension and the breakage of
ments in our model. These results are then discussed
summarized.

We start by noting that the fragmentation of coatings u
der uniaxial tension often leads to patterns consisting of p
allel cracks; then the physical situation is effectively on
dimensional ~1D!. In line with previous studies of
fragmentation @15,20–25# and having such situations i
mind, we start from a 1D model, as depicted in Fig. 1. T
coating is modeled as a linear arrangement of telescopic
ements that can partly extend under tension~for details see
below!. The number of telescopic elements isN21. Each
junction point between two telescopic elements is attac
via a leaf spring to the substrate. The leaf springs beh
under tension like Hookean springs, i.e., their forc
elongation relation is given byFk5Dvk whereFk (vk) are
the force~the elongation! of the kth leaf spring andD is its
elastic constant. Here we only consider the horizontal co
ponent of the elongations of the leaf springs and neglect
vector character of the elongation, cf. we follow the she
lag model@26#. We model the uniform extension of the su

FIG. 1. One-dimensional model for the fragmentation of th
plastic coatings under uniaxial substrate extension. We show
elongationsuk and the forcesf k on the telescopic elements in th
surface layer. The elongation of thekth leaf spring isvk , the cor-
responding restoring force beingFk . See text for details.
©2001 The American Physical Society09-1
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strate by increasing the distances between all leaf spring
the distance between two leaf springs increases from its
tial length l eq to l eq1D l , the strain in the substrate is«
5D l / l eq. Then stress is transferred from the substrate to
coating via the leaf springs. Such a stress transfer resul
the elongation of the telescopic elements. Previous stu
@15,20–25# of fragmentation of elastic coatings used simp
springs instead of telescopic elements.

The force-elongation relation of the telescopic element
displayed in Fig. 2. The initial length of a telescopic eleme
is l eq. Under~slow! extension of the substrate, the restori
forces f k21 and f k on the (k21)th and~kth! telescopic ele-
ments and the restoring forceFk of thekth leaf spring equili-
brate. If the forcef k on thekth telescopic element is smalle
than f y , then its elongationuk stays at zero:uk50. If f k
attains the valuef y , the element starts to ‘‘open,’’ so that i
the following f k5 f y is obeyed. The elongation takes a d
termined valueukÞ0 so that the conditions for the balanc
of forces and the geometrical requirements of the system
telescopic elements and springs are both fulfilled. We n
that such deformations, in which the element elongate
constant force, are quite often observed in the yielding
thermoplastic polymers. Furthermore, as indicated in Fig
if at a later stage the forcef k decreases, the elongationuk
keeps its attained value. The behavior depicted in Fig
modelsideal plasticity.

We now consider failure in the telescopic elements, s
themth element breaks if its elongationum exceeds a critica
valueub(m). In general, if an element breaks, this leads
stress relaxation in its neighborhood. Hence the stresse
the elements in the vicinity of this new crack decrease. If
force f k of thekth element drops below the valuef y , thenuk
does not decrease to zero, but retains the value that it atta
just when the crack occurred. This is indicated by the das
line in Fig. 2. This value is kept until the forcef k attains
again the thresholdf y for opening under the influence of th
continuously growing substrate extension. Then thekth tele-
scopic element can again continue to open. Given the str
strain curve depicted in Fig. 2, our telescopic elements sh
‘‘ideal’’ plasticity under deformation.

Let us now focus on the breakage of the elements. For

FIG. 2. Force-elongation relation for the telescopic eleme
The force is denoted byf and the total length of the element byl.
The initial length of the element isl eq. An element starts to open
when the forcef k on the element attains the valuef y . The dashed
line indicates that thekth telescopic element retains its elongation
the forcef k acting on it again drops belowf y .
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we assume that theub(k) discussed above are randomly di
tributed. Here we take as in former works@5,15,20–23,25#
that the cumulative probability distributionFcu(ub) of the
failure thresholds obeys a power law:

Fcu~ub!5H S ub2umin

W D a

for umin<ub<umin1W

0 otherwise.
~1!

The parameters of the distribution area, W, andumin . As we
proceed to show, the values of these parameters ha
strong influence on fragmentation.

If the mth telescopic element in the coating breaks, the
is removed from the system irreversibly and does not in
ence the forces and the elongations anymore, i.e., we
f m50 andum50 after the failure of themth element.

Our analysis of the model starts with the derivation of t
equations for the forces and for the elongations. The g
metrical arrangement of Fig. 1 implies

D l 5vk2vk111uk ~2!

for 1<k<N21. Since the sum of all forces acting on ea
junction point in the surface layer between two telesco
elements vanishes, we haveFk5 f k2 f k21 . At the bound-
aries f 05 f N50 holds. Hooke’s law for the leaf springs im
pliesFk5Dvk that leads tovk5( f k2 f k21)/D. Inserting this
equation into Eq.~2! yields

D l 52
1

D
~ f k1122 f k1 f k21!1uk . ~3!

If we divide Eq.~3! by l eq and definegk5 f k /(Dl eq) and the
applied strain«5D l / l eq, we are led to

«52gk1112gk2gk211ek . ~4!

In Eq. ~4! ek denotes the relative elongation of a telesco
element:ek5uk / l eq.

In the beginning, the elongations both of the telesco
elements and of the leaf springs vanish. Under substrate
tension one observes first that only the leaf springs move
higher extensions also the telescopic elements start to ext
In the first phase, the restoring forcesf k in the surface layer
are smaller thanf y , and thus the telescopic elements are n
stretched,ek50. Consequently, we find from Eq.~4!

«52gk1112gk2gk21 ~5!

for 1<k<N21. The solution of Eqs.~4! with the boundary
conditions g05gN50 is a parabola,gk5«k(N2k)/2. At
larger substrate extension the force on the telescopic elem
in the middle of the segment attains the valuef y and this
element starts to open. This opening prevents a further
crease in the force acting on the element. Instead, under
ther substrate extension the neighboring telescopic elem
also open. Then these neighbors also feel the forcef y . In-
terestingly, it turns out that this process of opening leads
the appearance of a plateau in theek vs k plot. Consider

.
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DISORDER AND PLASTICITY IN THE . . . PHYSICAL REVIEW E 64 016109
exemplarily five consecutive elements, sayn5k22, k21, k,
k11, k12, for which f n5 f y . With gk5 f k /(Dl eq) follows
from Eq. ~4! that the elongations for the elemen
m5k21, k and k11 are all equal,em5«5D l / l eq. Hence
one observes a successive opening of telescopic elem
that show~apart from the flanks! the same elongation; in
creasing the strain increases the plateau value and als
number of telescopic elements inside the plateau.

In order to exemplify this situation, we have solved t
system of Eqs.~4! numerically. In the simulations, we sta
from our one-dimensional model of Fig. 1. At the beginnin
each coating element is assigned a random maximum e
gation ub(k) using Eq.~1!. Then the equations for the ba
ance of forces are solved numerically. We applied two d
ferent simulation algorithms denoted byA and B. In our
simulations using algorithmA, we increase stepwise the a
plied strain« starting from«50 and solve Eqs.~4! with all
ek equal to zero. If the maximum value of the forcef k ex-
ceedsf y , then the force distribution is determined anew v
a relaxation method in order to find which elements open
our simulations using algorithmB, we increase the strain
step by step and determine the telescopic element for w
f k exceedsf y . Then we set its forcef k equal to f y and
determine from Eq.~4! its strainek . The use of algorithmB
requires that the stepwise increment in« be sufficiently
small. MethodA is slower, but is always successful, where
methodB may show instabilities, depending on the situati
at hand and hence must be used with care. Theek obtained
by both methods agree within 0.5%.

The results of the computations are presented in Fig
where the parameters areN564, D51, l eq51, f y51, umin
50.002,W50.01, anda51. In Fig. 3~a! we plot the relative
elongationsek as a function ofk. Figure 3~a! is taken in a
situation before the first failure occurs. For the parame
chosen «y58gy /N258 f y /(Dl eqN

2)50.001 95. One may
note the appearance of a plateau, symmetrically loca
aroundk532. Figure 3~a! is attained at«50.003 75, so that
«.«y . Figure 3~b! presents through a solid line the forcesf k
as a function ofk for the same situation as in Fig. 3~a!. Note
that the force distribution also displays a plateau zone, w
f k5 f y . The k range of the plateau zone of the force dist
bution is identical to that of the strain distribution. Outsi
the plateau the shape off k is parabolic. Additionally, we
display in Fig. 3~b! through a dashed line the forcesf k for
«5«y . Then no telescopic element is yet elongated and t
all ek are zero. Note that for«5«y the functionf k vs k is a
parabola with its maximal value equal tof y .

We now turn to the discussion of fracture, where the
fluence of plasticity becomes important. As just discuss
for «.«y the spatial distribution of the strainsek shows a
plateau, withek5«. The telescopic elements at the flanks
the plateau zone are elongated as well, but withek<«. The
elongation of the other elements is zero. Hence only the t
scopic elements in the plastic zone~plateau and flanks! can
break at this stage. Hence one of the elements of the pla
zone, namely, that with the lowest failure threshold will fa
~break! first. In Fig. 3~a! this element is indicated by the sta
touching the plateau, here atk530. After the failure, the
stress in the vicinity of the newly formed crack relaxes,
that next to it the restoring forcesf k of the telescopic ele-
ments can drop belowf y . Then the strainek of these ele-
01610
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ments is frozen until~under the influence of the continuou
extension of the substrate! at a later stage the force ma
again attain the valuef y . Due to the randomness in th
threshold values, after several breaks theek distribution be-
gins to scatter strongly; on the other hand the stress distr
tion in the sample is less irregular.

FIG. 3. Evolution of the relative elongationsek and the forcef k

with applied strain« before the first@~a! and ~b!# and the second
crack @~c! and ~d!# in the surface layer. The solid lines denote t
functions f k and ek , respectively, the stars are the failure thres
olds. The dashed line in~b! is the force distribution for«5«y . The
parameters areN564, D51, l eq51, f y51; furthermore umin

50.002,W50.01 anda51 in Eq. ~1!.
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In Fig. 3~c! we show the situation after the first failur
occurred~here at positionk530!, and shortly before the sec
ond failure happens~here at«50.008 69!. Note that the open
elements in the interval 23<k<41 are now frozen. The force
f k in the two newly formed segments increases with«. If the
maximum value off k attains again the valuef y for opening
@the plot of f k vs k is given in Fig. 3~d!#, an element in the
center of one of the two fragments opens. The second c
occurs in this new plastic zone@here at positionk547, see
Fig. 3~c!#.

As shown in Ref.@15#, the evolution of^L&, the mean
crack spacing, under applied strain provides much inform
tion about disorder and nonlinear material behavior. He
here we also monitor the fragmentation kinetics, i.e., the e
lution of ^L& with the applied strain. Here one can distingui
the following three important cases. For largeumin , umin

@«yleq, many telescopic elements open before the first f
ure occurs. Then the strainek of almost all coating element
equals « ~‘‘isostrain’’ situation @27#!. Since the average
number of cracks is given bŷn&5(N21)Fcu(« l eq), the
average crack spacing ^L& is ^L&5N/(^n&11)
'@(« l eq2umin)/W#2a. We note that this case models an e
perimentally relevant situation, where cracking always
curs at strains larger than the yield strain.

In the case of largeW, W@«yl eq, and umin arbitrary, a
few springs may break before large plastic zones form;
affects the initial stage of cracking and lets it resemble
corresponding situation in strongly disordered elastic co
ings @5#. On the other hand, for largeW, the total number of
cracks formed during this stage is small, so that the aver
crack spacinĝL& is still large enough to allow for the for
mation of large plastic zones in later stages of the proc
This again will lead tô L&}(« l eq2umin)

2a.
Another situation takes place in the case of smallW (W

,«yl eq) andumin,«yleq. In this case only a few elements i
the middle of the fragments open. Then the force distribut
is nearly parabolic with a maximum value off y . Since only
a very few elements are open when a crack is formed, e
failure occurs when the maximum value off k attains f y .
Thus the condition for breakage is«58gy /^L&2, which
leads to the power laŵL&}«21/2. Here the scaling law ex
ponent is1

2, independent ofa. In all cases we find a powe
law ^L&}«2k, where, however,k5a or k5 1

2 , depending
on the parameters.

We have simulated these three different situations:
consider, namely, failure processes in systems given bD
51 andl eq51, while using in the threshold distribution Eq
~1! a51; we consider three cases: in~a! we setN5256,
umin50.1, W57.5; in ~b! we takeN564, umin50, W510;
and in~c! N564, umin50, W50.05. We note that the set o
parameters~a! belongs to the case whereumin is large com-
pared to«yl eq, since we haveumin50.1.«yl eq50.000 122,
whereas, evidently,~b! and ~c! haveumin,«yleq. With these
parameter sets we perform the simulations for five real
tions of the failure threshold distribution and evaluate^L& as
a function of«; then we averagêL& over the five realiza-
tions. As stressed above, we expect in the cases~a! and~b! a
slope of 21, and for ~c! a slope20.5. The results of the
01610
ck

-
e
-

l-

-
-

is
e
t-

ge

s.

n

ch

e

-

simulations are presented in Fig. 4 together with two lin
with slope 20.5 and21, respectively. As is evident, th
simulation data support our analytical expressions.

Power laws of the typêL&}«2k also show up in the
fragmentation of elastic materials; for there one finds in l
fragmentation stagesk5a/(2a11) @5,20,21#. We stop to
note, however, that in the case of purely elastic materials,
strain inside each separated fragment depends on the a
stress, but is independent of the previous history. Plastic
terials, on the other hand, show strains that depend~due to
the earlier opening of telescopic elements! on the previous
history of the sample. This leads to an additional source
sequential non-Markovian behavior for plastic materials,
fect that changes the dependence ofk on a, from the form
for elastic materials given above.

We note that the situation discussed above~with purely
plastic elements! will persist when the elements also sho
elastic features at small stresses~note that plasticity domi-
nates at large stresses!. The reason is again the formation o
large plastic zones at larger strains. Evidently, the ini
stages of breakage will depend strongly on the elastic par
eters involved@5#.

Summarizing, in this study we have investigated the
quential cracking of thin coatings under uniaxial substr
extension. We have put forward a 1D model with ideal pla
tic elements. This allowed us to focus on the interplay b
tween the plastic behavior of the coating and the rand
distribution of coating defects. Our numerical simulatio
based on this model reveal that the values of the parame
entering Eq.~1! ~the failure probability distribution! strongly
influence the shape of the strain distribution, since they
termine the size of the plastic zone. The fragmentation kin
ics ~as determined from simulations! obeys scaling, i.e.,̂L&
and« are related by a power law behavior.

The authors are thankful for the support of the DFG~via
SFB 428! and of the Fonds der Chemischen Industr

FIG. 4. Average crack spacinĝL& vs applied strain« for D
51 andl eq51 and three sets of parameters of the failure thresh
distribution Eq.~1!. The mean crack spacing for each set of para
eters was obtained by averaging over five realizations of the fai
threshold distribution.~a! Here N5256, umin50.1, W57.5, a51
and thusk51. ~b! The parameters areN564, umin50, W510, and
a51, which yieldsk5a. ~c! HereN564, umin50, W50.05, and
a51 holds, and we findk51/2. The slope of the dashed line
20.5 and the slope of the solid line21.
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